351.

- (12) R. Schoenheimer and S. Ratner, J. Biol. Chem., 127, 301 (1939).

- (12) R. B. Wagner, J. Am. Chem. Soc., 71, 3214 (1949).
 (13) R. B. Wagner, J. Am. Chem. Soc., 71, 3214 (1949).
 (14) R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).
 (15) J. P. Greenstein and M. Winitz, "Chemistry of the Amino Acids", Vol. 3, Wiley, New York, N.Y., 1961, pp 2372–2373.
 (14) M. Bebenede, N.Y., 1961, pp 2372–2373.
- (16) M. Paabo and R. G. Bates, Anal. Chem., 41, 283 (1969).
 (17) A. A. Bothner-By and S. M. Castellano, "Computer Programs for Chemistry", Vol. 1, D. F. DeTar, Ed., W. A. Benjamin, New York, N.Y., 1968, pp 10–53; "Itrcal", Nicolet Instrument Corp., Madison, Wis., 1973.
- (18) K. G. R. Pachler, Spectrochim. Acta, 20, 581 (1964); Z. Anal. Chem., 224, 211 (1967).
- T. Axenrod in "Nitrogen NMR", M. Witanowski and G. A. Webb, Ed., Plenum Press, New York, N.Y., 1973, pp 261–317.
 W. C. Hamilton, Acta Crystallogr., 18, 502 (1965); W. C. Hamilton, "Sta-
- tistics in Physical Science: Estimation, Hypothesis Testing, and Least Squares", Ronald Press, New York, N.Y., 1964.
- (21) For a review see O. Hofer, *Top. Stereochem.*, 9, 111–197 (1976).
 (22) The ¹³C NMR spectrum of [¹⁵N']leucine was carefully compared to that

of leucine, and the insignificant difference between the line widths of the C^{γ} resonance of these compounds suggests that the vicinal coupling $({}^{15}\!N'\!-\!C^{\alpha}\!-\!C^{\beta}\!-\!{}^{13}\!C^{\gamma})$ is less than ± 1 Hz, in accordance with previously published work on $({}^{15}\!N\!-\!C'\!-\!C^{\alpha}\!-\!{}^{13}\!C^{\beta})$ couplings [R. L. Lichter, C. G. Fehder, P. H. Patton, J. Combes and D. E. Dorman, J. Chem. Soc., Chem. Commun., 114 (1974); R. DiBlasi and K. D. Kopple, ibid., 33 (1975)].

- (23) Probabilities for values of the ratio of R factors, \mathcal{R} , are tabulated in ref 20, from which $\mathcal{R}_{2,4,0,005} = 3.76$. G. Govil and H. J. Bernstein, *J. Chem. Phys.*, **47**, 2818 (1967).
- (25) G. M. Whitesides, J. P. Sevenair, and R. W. Goetz, J. Am. Chem. Soc., 89, 1135 (1967).
- (26) J. Feeney, J. Magn. Reson., 21, 473 (1976).
 (27) V. F. Bystrov, Prog. Nucl. Magn. Reson. Spectrosc., 10, 41 (1976). (28) R. J. Weinkam and E. C. Jorgensen, J. Am. Chem. Soc., 95, 6084 (1973).
- (29) K. G. R. Pachler, J. Chem. Soc., Perkin Trans. 2, 1936 (1972).
 (30) D. Cowburn, A. J. Fischman, D. H. Live, W. C. Agosta, and H. R. Wyssbrod, in "Peptides: Proceedings of the 5th American Peptide Symposium", M. Goodman and J. Meienhofer, Ed., Wiley, New York, N.Y., in press.

Ground States of Molecules. 40. MNDO Results for Molecules Containing Fluorine

Michael J. S. Dewar* and Henry S. Rzepa

Contribution from the Department of Chemistry, The University of Texas at Austin, Austin, Texas 78741. Received October 27, 1976

Abstract: Heats of formation, molecular geometries, first ionization potentials, and dipole moments are calculated by the MNDO method for a wide range of compounds containing fluorine. Major improvement, in comparison with MINDO/3, is obtained for most properties. The relative energies of conformational and geometrical isomers are in agreement with experiment and in some cases the results are superior to those obtained by ab initio methods. The calculated properties of the polyfluoromethane radical cations agree well with the observed stabilities. Good agreement is also obtained for higher vertical ionization energies, and particularly for species such as F2, where the highest occupied molecular orbitals are correctly predicted to be of π_g , π_u , and Σ_g^+ symmetry, respectively. Calculated proton and electron affinities agree well with experimental values. Singlet-triplet separations for fluorocarbenes and fluoronitrene are discussed.

Introduction

Previous papers¹⁻³ of this series have described a new semiempirical SCF MO procedure (MNDO), based on the NDDO approximation, and its application to a wide variety of molecules derived from the elements H, B, C, N, and O. The results were almost uniformly much better than those from MINDO/3,4 particularly for compounds containing pairs of adjacent heteroatoms. This was not unexpected because the INDO approximation (on which MINDO/3 was based) fails in such cases as a result of the neglect of one-center differential overlap,^{4a} Similar problems also arose in attempts^{4c} to extend MINDO/3 to compounds of fluorine, as again might have been expected since fluorine contains three pairs of unshared electrons. Here we report an extension of MNDO to fluorine and the results of calculations for a wide range of fluorine compounds.

Parametrization

The method previously described¹ was used in obtaining the fluorine parameters given in Table I. Initial estimates, obtained by linear extrapolation of the C, N, and O parameters,¹ were refined by fitting 50 selected properties of 12 fluorine molecules (marked * in the tables of results). The previously optimized atomic parameters for H, B, C, N, and O^{1,3} were held constant during this procedure. The final fluorine parameters were close to the extrapolated values, which suggests that the MNDO method as a whole is suitably self-consistent. It is also interesting to note that optimized orbital exponents are regularly about 0.3 greater than Clementi's values⁵ and that the one-

Table I. Optimized MNDO Parameters for Fluorine

Parameter	Value	Derived parameters	Value
$U_{\rm ss}$, eV	-131.071548	$\Delta H_{\rm f}^{\rm A}$, kcal mol ⁻¹	18.860
$U_{\rm nn}$, eV	-105.782137	$E_{\rm el}^{\rm A}$, eV	
ζ, au	2.848487	$D_1, \text{\AA}$	0.2681377
β, eV	-48.29046	$D_2, \text{\AA}$	0.2275224
$\beta_{\rm p}, {\rm eV}$	-36.50854	$\rho_0, \mathbf{\hat{A}}$	0.425492
$\alpha, {\rm \AA}^{-1}$	3.419661	$\rho_1, \mathbf{\hat{A}}$	0.243849
		ρ_2, \mathbf{A}	0.255793

Table II. Mean Absolute Errors $\Delta(\Delta H_f^{\circ})$ in the Heats o	f
Formation of Fluorine Compounds	

Class of		$\Delta\Delta H_{\rm f}^{\rm o}$, kcal mol ⁻¹
compd	No.	MNDO	MINDO/3
All compounds	71	9.80	24.8
Only CHF ^a	23	7.1	6.4
Only CHFO	8	8.8	16.6
Only CHNF	6	11.8	58.2
CHBNOF	11	12.5	40.1
Carbenes	2	14.5	30.5
Cations	9	8.0	24.9
Anions	3	14.3	39.5
Radicals	6	14.3	30.5
Radical cations	3	8.0	19.1 <i>^b</i>

^a Closed shell neutral compounds, not including carbenes. ^b 1 SCF calculation on the MNDO optimized geometry.

© 1978 American Chemical Society

Table 111. Heats of Formation of Closed Shell Fluorine Compounds by MNDO

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Compd	$\Delta H^{\circ}_{obsd},$ kcal mol ⁻¹	ΔH°_{calcd} , kcal mol ⁻¹	Error	Ref	Compd	ΔH° obsd, kcal mol ⁻¹	ΔH° calcd, kcal mol ⁻¹	Error	Ref
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HF	-65.1	-59.8	5.3	a	N_2F_4 (trans)	-2.0	-18.3	-16.3	а
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ F	-56.8*	-60.9	-4.1	b	HNF ₂		-19.9		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ F ₂	-107.7	-111.8	-4.1	a	CH ₃ NF ₂		-16.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHF ₃	-166.6	-163.9	2.7	а	F н				
$ \begin{array}{c} CH_{1}CH_{F} & -62.9 & -65.1 & -2.2 & c & H^{-1} $	CF ₄	-223.0*	-214.3	8.7	а			-34.5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH₃CH₂F	-62.9	-65.1	-2.2	С	Н				
$\begin{array}{cccc} CH_{+}CH_{+}(r_{gauche}) & -10.1 & & & & & & & & & & & & & & & & & & &$	CH ₃ CHF ₂	-119.7	-113.5	6.2	С	F.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_2FCH_2F (gauche)		-110.1			C-N		-32.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_2FCH_2F (trans)		-109.8			н Н				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CF ₃	-178.2	-164.5	13.7	С	$F_2C = N = N$		-22.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CF ₃ CF ₃	-321.2	-299.8	21.3	a	N				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(CH ₃) ₂ CHF	-69,4	-65.2	4.2	d	F.C		-21.2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>∆</u> -F		-256.3			N E NON		20.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-355.7	-360.4	-4.7	е	F CN	96*	39.9	11.2	~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	CE CN	119.4	-2.7	-11.5	u a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ ==CHF	-32.5*	-34.6	-2.1	f	CNE(135)	-110.4	-115.7	4.7	u
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CHF=CHF (cis)		-83.75		g	$C_{3}N_{3}\Gamma_{3}(1,3,3)$		-103.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHF=CHF (trans)	00.4	-83.25	• •		\Diamond		106.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_2 = CF_2$	-80.4	-84.2	-3.8	đ	(Q)− _F		-190.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CF = CF_2$	-117,3	-131.2	-13.9	a	N				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$CF_2 = CF_2$	-15/.4*	-1/5.8	-18.4	a	FNO	-15.0*	-24.8	-9.8	а
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Γ −− F		-242.6			CF ₃NO		-153.7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			212.0			FNO ₂	-26.0	0.6	26.6	а
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$=\cdot=F_2$		-52.4			FONO ₂	2.5	28.0	25.5	a
$\begin{array}{ccccccc} C_{41}C_{7}(1,2) & -70.3 & -70.8 & -0.5 & d & F_{7} & 0.1 \\ C_{6}H_{F_{2}}(1,3) & -74.0 & -71.1 & 2.9 & d & BF_{3} & -271.4^{*} & -261.1 & 10.3 & a \\ C_{6}H_{F_{2}}(1,3) & -74.0 & -71.2 & 2.1 & d & B_{2}F_{4}(D_{2}d) & -342.2 & -339.4 & 2.8 & a \\ C_{4}H_{F_{3}}(1,3,5) & -115.9 & HBF_{2} & -175.4 & -177.1 & -1.7 & a \\ C_{6}F_{5} & -192.5 & -201.8 & -9.3 & d & CH_{3}BF_{2} & -199 & -191.5 & 7.5 & m \\ C_{7}F_{6} & -228.5 & -244.3 & -15.8 & d & F_{2}BCH=CH_{2} & -171 & -166.7 & 4.3 & m \\ F_{2}BC=CH & -131.6 & F_{2}BCH=CH_{2} & -171.4 & -140.5 & 3.5 & a \\ F_{7}BOH & -229.0 & -253.4 & 5.6 & a \\ HOF & -23.5 & -18.7 & 4.8 & h & (BNF)_{3}(1,3,5) & -386.0 \\ CH_{4}FCH_{0}OH (gauche) & -109.0 & F_{2} & 0.0^{*} & 7.3 & 7.3 \\ CF_{5}OF & -182.8 & -163.5 & 19.3 & a & CHF_{2} & 142.4^{*} & 132.3 & -10.1 & n \\ F_{0}C & 5.9^{*} & 18.2 & 12.3 & a & CF_{3}^{*} & 99.3 & 100.7 & 1.2 & n \\ HCOF & -90.0 & -88.9 & 1.1 & a & CH_{5}CF_{4}^{*} & 107 & 116.5 & 9.4 & o \\ CH_{4}COF & -106.4 & -96.5 & 9.9 & d & CH_{5}CF_{4}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{5}OCF_{3} & -152.7^{*} & -138.8 & 13.9 & a & CHF_{2}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{5}OCF_{4} & -182.8 & -163.5 & 19.3 & a & CHF_{2}^{*} & 107 & 116.5 & 9.4 & o \\ F_{7}CO & -152.7^{*} & -138.8 & 13.9 & a & CHF_{2}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{5}COC_{4} & -189.9 & CF_{3}CH_{4}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{5}COC_{5} & -152.7^{*} & -138.8 & 13.9 & a & CH_{7}CF_{7}^{*} & 81 & 84.3 & 3.3 & o \\ CF_{5}COC_{4} & -189.9 & CF_{3}CH_{4}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{5}COC_{5} & -1325.2 & -322.3 & 2.9 & k & CH_{7}CH_{7}^{*} & >166 & 187.3 & o \\ CF_{5}CO_{4} & -118.2 & -111.9 & 6.3 & d & BF_{3}^{*} & 87 & 84.2 & -2.8 & a \\ NF_{5} & -31.4^{*} & -34.1 & -2.7 & a & CF_{3}^{*} & -163.4 & -178.9 & -15.5 & p \\ FN=NF(cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -284 & 264.3 & -19.7 & a \\ NF_{7} & -31.4^{*} & -34.1 & -2.7 & a & CF_{3}^{*} & -163.4 & -178.9 & -15.5 & p \\ FN=NF(cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -29.5 & -336.6 & -13.1 & p \\ NF_{7} & -31.4^{*} & -34.1 & -2$	C ₆ H ₅ F	-26.5	-25,4	1.1	d	F ₃ NO	-39	22.8	61.8	a,l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_6H_4F_2(1,2)$	-70.3	-70,8	-0.5	d	F ₂ NOF		0.1		
$\begin{array}{ccccccc} C_{4} R_{F} 2 (1,4) & -73.3 & -71.2 & 2.1 & d & B_{5} R_{4} (D_{2d}) & -342.2 & -339.4 & 2.8 & a \\ C_{6} H_{5} 2 (1,3,5) & -115.9 & HBF_{2} & -175.4 & -177.1 & -1.7 & a \\ C_{6} H_{5} & -192.5 & -201.8 & -9.3 & d & CH_{3} BF_{2} & -199 & -191.5 & 7.5 & m \\ C_{8} F_{6} & -228.5 & -244.3 & -15.8 & d & F_{5} BC = CH_{2} & -171 & -166.7 & 4.3 & m \\ \hline \\ \hline \\ F_{F} & & -1.4 & FB = O & -144.0 & -140.5 & 3.5 & a \\ F_{2} BOH & -259.0 & -253.4 & 5.6 & a \\ F_{2} BOH & -259.0 & -253.4 & 5.6 & a \\ F_{2} BOH & -259.0 & -253.4 & 5.6 & a \\ F_{2} BOH & -259.0 & -253.4 & 5.6 & a \\ F_{2} BOH & -259.0 & -253.4 & 5.6 & a \\ F_{2} BOH & -259.0 & -253.4 & 5.6 & a \\ F_{2} C = CH & 5.0 & 15.0 & 10.0 & a & F_{2} B = NH_{2} & -199.0 \\ HOF & -23.5 & -18.7 & 4.8 & h & (BNF)_{3} (1,3,5) & -386.0 \\ CH_{2} F_{4} CH_{2} OH (gauche) & -109.0 & F_{2} & 0.0^{*} & 7.3 & 7.3 \\ CF_{3} OE & -182.8 & -163.5 & 19.3 & a & CHF_{7}^{*} & 142.4^{*} & 132.3 & -10.1 & n \\ F_{2} O & 5.9^{*} & 18.2 & 12.3 & a & CF_{3}^{*} & 99.3 & 100.7 & 1.2 & n \\ HCOF & -90.0 & -88.9 & 1.1 & a & CH_{3} CHF_{7}^{*} & 107 & 116.5 & 9.4 & o \\ CH_{4} COF & -106.4 & -96.5 & 9.9 & d & CH_{3} CF_{2}^{*} & 107 & 116.5 & 9.4 & o \\ CF_{3} CCD_{5} & -152.7^{*} & -138.8 & 13.9 & a & CH_{3} CF_{3}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{3} CCF_{5} & -238.4 & 16.6i & d & CH_{5} CFLF^{*} & >166 & 187.3 & o \\ CF_{5} COC F_{3} & -325.2 & -322.3 & 2.9 & K & CH_{3} CH_{3}^{*} & -34.2 & -2.8 & a \\ NF_{5} & -0.4 & -2.5 & i & -238.4 & 16.6i & d & CH_{5} CFLF^{*} & >166 & 187.3 & o \\ F_{-} \bigcirc -co.H & -118.2 & -111.9 & 6.3 & d & BF_{2}^{*} & 284 & 264.3 & -19.7 & a \\ NF_{5} & -31.4^{*} & -34.1 & -2.7 & a & CF_{3}^{*} & -29.5 & -43.6 & -13.1 & p \\ FN \equiv NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -29.5 & -43.6 & -13.1 & p \\ FN \equiv NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -29.5 & -43.6 & -13.1 & p \\ \end{array}$	$C_6H_4F_2(1,3)$	-74.0	-71.1	2.9	d	BF ₃	-271.4*	-261.1	10.3	а
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_6H_4F_2(1,4)$	-73.3	-71.2	2.1	d	B_2F_4 (D_{2d})	-342.2	-339.4	2.8	а
$\begin{array}{cccccccc} C_{e}H_{1}r_{s} & -192.5 & -201.8 & -9.3 & d & Ch_{3}Br_{2} & -199 & -191.5 & 7.5 & m \\ C_{e}F_{e} & -228.5 & -244.3 & -15.8 & d & F_{3}BCH=CH_{2} & -171 & -166.7 & 4.3 & m \\ F_{3}BC=CH & -131.6 & & F_{3}BC=CH & -131.6 \\ F_{3}BC=CH & -259.0 & -253.4 & 5.6 & a \\ F_{3}BOH & -259.0 & -253.4 & 5.6 & a \\ F_{3}BOH & -259.0 & -253.4 & 5.6 & a \\ BOF_{3} & -556.3 & -525.8 & 39.8 & a \\ FC=CH & 5.0 & 15.0 & 10.0 & a & F_{3}B=NH_{2} & -199.0 \\ HOF & -23.5 & -18.7 & 4.8 & h & (BNF)_{3}(1.3,5) & -386.0 \\ CH_{2}FCH_{2}OH (gauche) & -109.0 & F_{2} & 0.0* & 7.3 & 7.3 \\ CF_{3}CF_{4}OH, OH (gauche) & -220.6i & -208.4 & 12.2i & j & CH_{3}F^{*} & 200.3 & 182.7 & -17.5 & n \\ CF_{3}OF & -182.8 & -163.5 & 19.3 & a & CHF_{2}^{*} & 142.4^{*} & 132.3 & -10.1 & n \\ F_{2}O & 5.9^{*} & 18.2 & 12.3 & a & CF_{7}^{*} & 99.3 & 100.7 & 1.2 & n \\ HCOF & -90.0 & -88.9 & 1.1 & a & CH_{3}CHF^{*} & 166 & 164.7 & -1.3 & o \\ F_{4}COF & -106.4 & -96.5 & 9.9 & d & CH_{2}CF_{7}^{*} & 107 & 116.5 & 9.4 & o \\ F_{2}CO & -152.7^{*} & -138.8 & 13.9 & a & CH_{2}FCF_{2}^{*} & 81 & 84.3 & 3.3 & o \\ CF_{3}COCH_{3} & -189.9 & CF_{3}CH_{7}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{3}COCF_{5} & -325.2 & -322.3 & 2.9 & k & CH_{2}FCF_{2}^{*} & 81 & 84.3 & 3.3 & o \\ CF_{5}COCH_{3} & -255i & -238.4 & 16.6i & d & CH_{3}FCHF^{*} & >166 & 187.3 & o \\ F-OD - C_{0}H & -118.2 & -111.9 & 6.3 & d & BF_{2}^{*} & 87 & 84.2 & -2.8 & a \\ NF_{3} & -31.4^{*} & -34.1 & -2.7 & a & CF_{3}^{*} & -163.4 & -178.9 & -15.5 & p \\ FN=NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -295.5 & -43.6 & -13.1 & p \\ FN=NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -295.5 & -43.6 & -13.1 & p \\ FN=NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -295.5 & -43.6 & -13.1 & p \\ FN=NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -295.5 & -43.6 & -13.1 & p \\ FN=NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -295.5 & -43.6 & -13.1 & p \\ FN=NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -295.5 & -43.6 & -13.1 & p \\ FN=NF (cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -295.5 & -43.6 & -13.1 $	$C_6H_3F_3(1,3,5)$	102.5	-115.9			HBF ₂	-175.4	-177.1	-1.7	а
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₆ HF ₅	-192.5	-201.8	-9.3	đ	CH_3BF_2	-199	-191.5	7.5	m
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-228.5	-244.3	-15.8	a	$F_2BCH = CH_2$ F BC = CH	-1/1	-100.7	4.3	т
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\bigotimes					$\Gamma_2 BC = C \Pi$ FB=0	_144_0	-131.0	2 5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1.4			F BOH	-259.0	-140.3	5.5	ů
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\sim $_{\rm F}$					(BOF)	-565.3	-235.4	30.8	u a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FС≡≡Сн	5.0	15.0	10.0	a	$F_B = NH_1$	505.5	-199.0	57.0	u
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HOF	-23.5	-187	4.8	u h	(BNE), (1.3.5)		-386.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH.FCH.OH (gauche)	20.0	-109.0	4.0	"	F.	0.0*	7.3	7.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CF ₂ CH ₂ OH (gauche)	-220.6^{i}	-208.4	12 <i>2i</i>	i	ĊĤ_F⁺	200.3	182.7	-17.5	n
$\begin{array}{ccccccccccccccc} F_{2}O & 5.9* & 18.2 & 12.3 & a & CF_{2}^{*} & 19.3 & 100.7 & 1.2 & n \\ HCOF & -90.0 & -88.9 & 1.1 & a & CH_{3}CHF^{*} & 166 & 164.7 & -1.3 & o \\ CH_{3}COF & -106.4 & -96.5 & 9.9 & d & CH_{3}CF_{2}^{*} & 107 & 116.5 & 9.4 & o \\ F_{2}CO & -152.7* & -138.8 & 13.9 & a & CH_{2}FCF_{2}^{*} & 81 & 84.3 & 3.3 & o \\ CF_{3}COCH_{3} & & -189.9 & & CF_{3}CH_{2}^{*} & 114 & 121.1 & 7.1 & o \\ CF_{3}COCF_{3} & -325.2 & -322.3 & 2.9 & k & CH_{2}FCH_{2}^{*} & >166 & 187.3 & o \\ CF_{3}CO_{2}H & (trans) & -255i & -238.4 & 16.6i & d & CH_{2}FCH_{2}^{*} & >166 & 187.3 & o \\ F- & & & & & & \\ F- & & & & & \\ FN=NF(cis) & 16.4 & -2.2 & -18.6 & a & NF_{2}^{*} & -29.5 & -43.6 & -13.1 & p \\ FN=NF(cis) & 19.4 & -25 & 16.9 & a & NF_{2}^{*} & -29.5 & -43.6 & -13.1 & p \\ NF_{3} & & & & & & \\ FN=NF(cis) & 19.4 & -25 & 16.9 & a & NF_{2}^{*} & -29.5 & -43.6 & -13.1 & p \\ N=NF_{2} & & & & & \\ NF_{2} & & & & \\ NF_{2} & & & &$	CF ₂ OF	-182.8	-163.5	19.3	7	CHF. ⁺	142.4*	132.3	-10.1	n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F.O	5.9*	18.2	12.3	<u>a</u>	CE. ⁺	99.3	100.7	1 2	n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HCOF	-90.0	-88.9	1 1	а а	CH.CHF ⁺	166	164 7	_1.2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH-COF	-1064	-96.5	9.9	đ	CH.CE. ⁺	107	116.5	94	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F ₂ CO	-152.7*	-138.8	13.9	u a	CH.FCF. ⁺	81	84 3	33	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CF,COCH,		-189.9	10.0		CF_CH_+	114	121.1	7.1	õ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF_COCF_	-325.2	-322.3	2.9	k	CH.FCH. ⁺	>166	187.3		õ
$\begin{array}{c ccccc} F & -118.2 & -111.9 & 6.3 & d & BF_2^+ & >81 & 97.3 & o \\ F & & & & & & & & & & & & \\ \hline & & & & & &$	CF ₃ CO ₃ H (trans)	-255^{i}	-238.4	16.6	đ	CH_FCHF⁺	>127	130.8		õ
F Co2H -118.2 -111.9 6.3 d BF_2^{+*} 87 84.2 -2.8 a NF3 -31.4* -34.1 -2.7 a CF_3^- -163.4 -178.9 -15.5 p FN=NF (cis) 16.4 -2.2 -18.6 a NF_2^- -29.5 -43.6 -13.1 p EN=NE (trans) 19.4 2.5 16.9 a NF_2^- 121.7 127.7 11.2				-0.0		CHÉ.CHF⁺	>81	97.3		ō
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F-(C)-CO ₂ H	-118.2	-111.9	6.3	d	BF, ⁺	87	84.2	-2.8	ã
NF3 -31.4^* -34.1 -2.7 a $CF_3^ -163.4$ -178.9 -15.5 p FN=NF (cis) 16.4 -2.2 -18.6 a $NF_2^ -29.5$ -43.6 -13.1 p EN=NE (trans) 19.4 2.5 16.9 a $NF_2^ -101.7$ 127.4 142.2	<u> </u>					NF ⁺	284	264.3	-19.7	a
FN=NF (cis) 16.4 $-2.2 -18.6 a$ NF ₂ $-29.5 -43.6 -13.1 p$ FN=NE (trans) 19.4 $2.5 -16.9 a$ PF ₂ $-29.5 -43.6 -13.1 p$	NF ₃	-31.4*	-34.1	-2.7	а	CF ₃ -	-163.4	-178.9	-15.5	p
$FN = NF(trans)$ 10.4 2.5 16.0 a DE^{-1} 10.1.7 177.4 14.2	FN = NF (cis)	16.4	-2.2	-18.6	а	NF ₂ -	-29.5	-43.6	-13.1	р
117 - 111 (11010) 17.4 2.5 - 10.7 4 BF ₂ - 191./ -1//.4 14.2 q	FN=NF (trans)	19.4	2.5	-16.9	а	BF ₂	-191,7	-177.4	14.2	q

^aD. R. Stull and H. Prophet, "JANAF Thermochemical Tables", 2nd ed, NSRDS-NBS 37, 1971. ^bA. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, *J. Phys. Chem. Ref. Data*, 3, 117 (1974). ^cS. S. Chen, A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, *ibid.*, 4, 441 (1975). ^dJ. D. Cox and G. Pilcher, "Thermochemistry of Organic and Organometallic Compounds", Academic Press, New York, N. Y., 1970. ^eV. P. Kolesov, O. G. Talakin, and S. M. Skuratov, *Zh. Fiz. Khim.*, 42, 2307 (1968). ^fV. P. Kolesov and T. S. Papina, *ibid.*, 44, 1101 (1970). ^gThe cis form is found to be 901 cal/mol more stable; cf. N. C. Craig and E. A. Entemann, *J. Am. Chem. Soc.*, 83, 3047 (1961). ^hM. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, *J. Phys. Chem.*

center one-electron integrals U_{pp} are about 2 eV more positive than the values given by Oleari.⁶ Finally, the use of atomic parameters reduces the number of adjustable constants required for the elements C, H, B, N, O, and F from 61 in MINDO/3 to 31 in MNDO.

Ref. Data, 4, 1 (1975). ${}^{i}\Delta H_{\rm f}(1)$, which must be corrected for $\Delta H({\rm vap})$. j V. P. Kolesov, L. S. Ivanov, and S. M. Skuratov, Zh. Fiz. Khim, 45, 547 (1971). k A. S. Gordon, Int. J. Chem. Kinet., 4, 541 (1972). l R. Bougon, J. Chatelet, J. P. Desmoulin, and P. Plurien, C. R. Acad., Ser. C, 266, 1760 (1968). m W. C. Steele, L. D. Nichols, and F. G. A. Stone, J. Am. Chem. Soc., 84, 1154 (1962). n R. J. Blint, T. B. McMahon, and J. L. Beauchamp, *ibid.*, 96, 1269 (1974). o D. P. Ridge, *ibid.*, 97, 5670 (1975). P. W. Harland and J. L. Franklin, J. Chem. Phys., 61, 1621 (1974). 4 R. D. Srivastava, O. M. Uy, and M. Farber, J. Chem. Soc., Faraday Trans. 1, 70, 1033 (1974).

Results and Discussion

A. Heats of Formation. Tables II and III compare the calculated and observed heats of formation at 25 °C (ΔH_f) for a representative selection of molecules containing fluorine.

 Table IV. Heats of Formation of Open-Shell Fluorine Compounds

 by the Half-Electron Method?

Compd	ΔH° _{obsd} , kcal mol ⁻¹	ΔH° _{calcd} , kcal mol ⁻¹	Error	Ref
CH_2F		-33.3		
CHF ₂ ·		-88.4		
CF ₃ .	-112.4	-137.2	-24.8	a,b
CF ₃ CH ₂ ·	-123.6	-129.8	-6.2	С
NF ₂ :	10.1	-14.8	-24.9	а
FO [.]	26.1	32.5	6.4	d
FO ₂ ·	3.0	24.1	21.1	а
BF_2	-139	-136.8	2.2	b
•ĊĦF (³ A'')		14.5		
$\cdot \dot{C}F_{2}(^{3}B_{1})$		-31.3		
$\cdot NF(^{3}\Sigma^{-})$		31.6		
$:CHF(^{1}A')$	30.0	21.5 ^e (19.1) ^f	-8.5	а
$:CF_2(^1A_1)$	-45	-65.2(-66.4)	-20.2	g
$:NF(1\Delta)$		68.7 (56.3)		•
CH ₃ F ⁺	233.3	223.2	-10.1	h
CH ₂ F ₂ +·	185.2	178.3	-6.9	h
CHF ₃ .	151.9	158.7	6.9	h
CF4 ^{+.}		(119.6)		i

^a D. R. Stull and H. Prophet, "JANAF Thermochemical Tables", 2nd ed, NSRDS-NBS 37, 1971. ^b R. D. Srivastava, O. M. Uy, and M. Farber, J. Chem. Soc., Faraday Trans. 1, **70**, 1033 (1974). ^c E. C. Wu and A. S. Rodgers, J. Phys. Chem., **78**, 2315 (1974). ^d J. Berkowitz, P. M. Dehmer, and W. A. Chupka, J. Chem. Phys., **59**, 925 (1973). ^e Obtained from a RHF S₀ calculation. This value should be used in comparison with experimental values, since MNDO is parametrized without inclusion of CI. ^f Lowest root of a 3 × 3 CI, based on the S₁ half-electron eigenvectors. ^g J. Vogt and J. L. Beauchamp, J. Am. Chem. Soc., 97, 6682 (1975); E. N. Okafo and E. Whittle, J. Chem. Soc., Faraday Trans. 1, **70**, 1366 (1974). ^h R. J. Blint, T. B. McMahon, and J. L. Beauchamp, J. Am. Chem. Soc., 96, 1269 (1974). ⁱ Dissociates to CF₃⁺ and F⁻.

Results for open-shell molecules, calculated by the "halfelectron" method,⁷ are listed in Table IV. For 71 molecules where reasonably accurate data are available, the mean absolute error in ΔH_f is reduced from 24.8 kcal/mol (MINDO/3) to 9.8 kcal/mol. The largest improvement is, as expected, for compounds of fluorine with nitrogen and oxygen. Indeed, for compounds of CH and F only, MINDO/3 is slightly superior, probably as a result of the use of bond rather than atomic parameters. Major improvements are seen for carbenes, cations, anions, and radicals, where the mean errors are not significantly greater than the overall error. In the case of radicals, the calculated heats of formation seem to be systematically too negative, a tendency that had previously been noted for radicals containing no fluorine.

In the set of 71 molecules analyzed, only two show errors of greater than 30 kcal in ΔH_f . For one of these (F₃B₃O₃), the experimental value may be in error, whereas the other (F₃NO) may be a case where the 2s, 2p orbital basis set used needs extension with polarization functions. The error in the calculated heat of formation (62 kcal) is certainly quite exceptionally large (cf. ref 1–3) and it should also be noted that MNDO gave quite a good result for FNO (error, -9.8 kcal/mol). For this reason, we did not include F₃NO in the statistical analysis.

The only other significant errors occur for highly fluorinated compounds such as C_2F_6 , which tend to be too unstable. This systematic deviation seems to be due to an overestimation of the fluorine-fluorine repulsions, which also leads to too small a calculated decrease in the CF bond length with multiple substitution by fluorine at a given carbon atom (see below).

Relative energies of conformational and geometrical isomers come out very well, the propensity of fluorine for cis or gauche

conformations being very well reproduced. In the case of 2fluoroethanol, this effect is apparently reinforced by weak hydrogen bonding, resulting in the gauche/gauche conformer being the most stable. 2,2,2-Trifluoroethanol is similar, preferring a conformation where the OH bond is gauche with respect to the C-C bond, the length from the hydrogen to the nearest fluorine being 2.8 Å. It should be emphasized that in cases such as this, where the molecule has no symmetry, all geometrical variables should be fully optimized. In contrast to the fluoro alcohols, the trans conformer of trifluoroacetic acid is 4 kcal/mol more stable than the cis. There does not appear to be any experimental evidence for this system. The only two examples given in Table V which appear to contradict the experimental evidence are B_2F_4 and N_2F_4 . It seems likely that for N_2F_4 , the experimental estimate,⁸ based on a conformational population measured by electron diffraction, may not be very accurate, and the same may be true for B_2F_4 . In the latter case our calculation agrees with a recent ab initio one.⁹ Rather surprisingly, ab initio calculations, using the 4-31G basis set, erroneously predict *trans*-1,2-difluoroethylene to be more stable than the cis isomer¹⁰ and trans-1,2-difluoroethane to be more stable than the gauche conformer.¹¹ Also, cis-difluorodiazine is only 1 kcal more stable than the trans isomer (full geometry optimization using a 4-31G basis set¹⁰), the experimental value being about 3 kcal/mol and the MNDO value being 4.7 kcal. One possible weakness of the MNDO method may be in cases involving strong hydrogen bonds. The heat of formation of FHF⁻ from F⁻ and HF is predicted to be too positive ($\Delta H_{calcd} = -28.4 \text{ kcal/mol}$, $\Delta H_{\rm obsd}^{12} = -44$ to -50 kcal/mol), and the energy of most weak hydrogen bonds is underestimated.13

The calculated geometries and energies of the molecular ions of the fluoromethanes are interesting. Thus in H_3CF^+ and $H_2CF_2^+$ the C-H distances are particularly long (1.20–1.21 Å), while in HCF₃⁺ the C-H bond length has the large value of 1.38 Å. Curiously, the bound state of the latter is endothermic with respect to H[•] and CF₃⁺ (5.9 kcal/mol) or F[•] and HCF₂⁺ (7.5 kcal/mol). The activation energy for the dissociation to H[•] and CF₃⁺ is only 1.8 kcal/mol (the H-C bond length in the transition state being 1.8 Å), compared with 14.1 kcal/mol for dissociation to F[•] and HCF₂⁺. This is consistent with the observed mass spectral fragmentation, the molecular ion not normally being observed and the M - 1 ion being more intense than the M - 19 ion.¹⁴ CF₄^{+•} is calculated to be unbound, in agreement with the failure to observe any molecular ion for this species.

B. Relative Energies of Singlets and Triplets. The ground states of CH2 and NF are well established to be triplets and those of CHF and CF₂ to be singlets, although the singlettriplet separation of even such a well-studied case as methylene continues to be controversial.¹⁵ The MNDO results (Table IV) predict that the singlet ground state of CF_2 (¹A₁) is 34 kcal/ mol lower than the triplet ${}^{3}B_{1}$ state, which is qualitatively correct and also in good agreement with the ab initio calculations of Staemmler¹⁶ (34 kcal/mol). However, we incorrectly predict the ³A" state of CHF to be 7 kcal/mol lower than the singlet 'A' state, compared with a separation of 7.4 kcal/mol obtained by Pople using a 3G basis set¹⁷ and 3 kcal/mol obtained by Staemmler using a larger basis set.¹⁶ If allowance for electron correlation is made in the ab initio methods, however, the triplet energy is increased by up to 15 kcal relative to the singlet. Thus the most recent calculations¹⁵ predict a ${}^{3}B_{1}/{}^{1}A_{1}$ separation for methylene itself of about 8–9 kcal/mol, in agreement with photochemical determinations but not with a recent photoelectron value¹⁵ of 19.5 kcal/mol. The MNDO value of 30 kcal/mol¹⁸ is in better agreement with this latter value. The electron affinity, however, is not reproduced very well (EA_{calcd} - 1.19 eV, EA_{obsd} 0.21 \pm 0.03 eV¹⁵). The ${}^{3}\Sigma^{-}/{}^{1}\Delta$ separation for FN: is calculated by MNDO to be 37.1

	$\Delta(\Delta H)$, kcal mol ⁻¹					
lsomerization reaction	Calcd ^a	Exptl	Ab initio			
CH_2FCH_2F (gauche) $\rightarrow CH_2FCH_2F$ (trans)	0.3	0.6b	-1.0c			
$CF_3CF_3(D_{3d}) \rightarrow CF_3CF_3(D_{3h})$	2.1	3.9d				
CH_2FCH_2OH (gauche) $\rightarrow CH_2FCH_2OH$ (trans)	0.7	>2.8e	0.80			
$N_2F_4(C_2) \rightarrow N_2F_4(C_{2h})$	1.3	-0.9f				
$B_2F_4(D_{2d}) \rightarrow B_2F_4(D_{2h})$	1.1	-0.38	0.3 <i>h</i>			
$CHF = CHF (cis) \rightarrow CHF = CHF (trans)$	0.5	0.9 <i>i</i>	<01			
$ \begin{array}{c} F \\ F \\ H \end{array} \subset = N \xrightarrow{H} \xrightarrow{H} \xrightarrow{F} \xrightarrow{C} = N \xrightarrow{H} $	2.5		2.0 <i>i</i>			
$F_{N=N} \xrightarrow{F} \xrightarrow{F_{N=N}} N=N_{F}$	4.7	3.0 <i>k</i>	1.01			
$CF.N=NCF.$ (trans) $\rightarrow CF.N=NCF.$ (cis)	4.0	>0 <i>m</i> , <i>n</i>				
$HNF_2(C_s) \rightarrow HNF_2(C_{2\nu})$	29,6	>18.00	34.4-41.7P			
$F_{\text{FNO}_2} \rightarrow 0 = N^{-1}$	1.1					
$F \rightarrow 0 \rightarrow 0 \rightarrow F$	1.3					

Table V.	Relative	Energies	of	Conformational	and	Geometrical lsomers
----------	----------	----------	----	----------------	-----	---------------------

^{*a*} Values for ΔH_{f} are given in Table 111. ^{*b*} P. Huber-Wälchli and H. H. Günthard, *Chem. Phys. Lett.*, 30, 347 (1975), who report a value for ΔG° ; ΔH° will be about 700 cal/mol less. ^{*c*} L. Radom, W. A. Latham, W. J. Hehre, and J. A. Pople, *J. Am. Chem. Soc.*, 95, 693 (1973). ^{*d*} D. F. Eggers, R. C. Lord, and C. W. Wickstrom, *J. Mol. Spectrosc.*, 59, 63 (1976). ^{*e*} K. Hagen and K. Hedberg, *J. Am. Chem. Soc.*, 95, 8263 (1973). ^{*f*} M. M. Gilbert, G. Gundersen, and K. Hedberg, *J. Chem. Phys.*, 56, 1691 (1972). The value was obtained from the conformation population as estimated by electron diffraction. ^{*g*} D. D. Danielson and K. Hedberg, Sixth Austin Symposium on Gas Phase Molecular Structure, University of Texas at Austin, 1976, p 21. ^{*h*} J. M. Howell and J. R. Van Wazer, *J. Am. Chem. Soc.*, 96, 7902 (1974). ^{*i*} N. C. Craig and J. Overend, *J. Chem. Phys.*, 51, 1127 (1969), *i* J. M. Howell, *J. Am. Chem. Soc.*, 98, 886 (1976). ^{*k*} G. T. Armstrong and S. Marantz, *J. Chem. Phys.*, 38, 169 (1962). ^{*i*} J. M. Howell and L. J. Kirschenbaum, *J. Am. Chem. Soc.*, 98, 877 (1976), This result was obtained using a 4-31G basis set. The same authors find a barrier to isomerization of 71 kcal/mol with the same basis set, The MNDO value is 63.4 kcal/mol. ^{*m*} Infrared and Raman evidence^{*n*} strongly supports the trans configuration in the gas phase. ^{*n*} R. A. Hayden, E. C. Tuazon, and W. G. Fateley, *J. Mol. Struct.*, 16, 35 (1973). ^{*o*} The value for an alkyldifluoramine; cf. S. K. Brauman and M. E. Hill, *J. Chem. Soc. B*, 1091 (1969). *PS. Skaarup*, L. L. Griffin, and J. E. Boggs, *J. Am. Chem. Soc.*, 98, 3140 (1976).

Table VI. Proton a	Table VI. Proton and Electron Affinities of Fluorine Compounds					
Base	Proton affinity, ^{<i>a</i>} kcal mol ⁻¹	Calcd	Error			
CH ₂ CHF	168 <i>^b</i>	166.4	-1.6			
CH_2CF_2	177 ⁶	165.0	-12.0			
CHFCF ₂	167 <i>^b</i>	150.2	-16.8			
:CHF		204.5				
:CF2	172°	168.4	-3.6			
Molecule	Electron affinity, ^d kcal	Calad	Error			
Molecule	moi	Calco	Error			
CF3	46 ^e	42	4			
BF ₂ ·	51 <i>f</i>	41	-10			
:CHF		0.5				
:CF2	-	15.8				

^a ΔH for the reaction X + H ⁺ \rightarrow XH ⁺ . ^b D. P. Ridge, J. Am
Chem. Soc., 97, 5670 (1975). CJ. Vogt and J. L. Beauchamp, ibid.,
97, 6682 (1975). ^d ΔH for the reaction X [•] + e ⁻ \rightarrow X ⁻ . ^e J. H. Rich-
ardson, L. J. Stephenson, and J. I. Brauman, Chem. Phys. Lett., 30,
17 (1975). J R. D. Srivastava, O. M. Uy, and M. Farber, J. Chem.
Soc., Faraday Trans. 1, 70, 1033 (1974).

kcal/mol. MNDO therefore seems to predict the correct singlet-triplet ordering for carbenes, except when the energy difference is small, as is obviously the case for monofluoromethylene. The stability of triplet species may be overestimated, a phenomenon noted previously for doublets (vide supra).

Table V1I. Mean	Absolute	Errors	in	Optimized	Bond	Lengths	and
Bond Angles							

Geometrical variable	No.	Mean absolute error
All bond lengths	130	0.034 <i>ª</i>
Involving H	23	0.016
BF	5	0.004
CF	37	0.018
NF	9	0.105
OF	3	0.148
FF	1	0.152
BC	1	0.020
CC	32	0.038
CN	8	0.033
CO	4	0.044
BN	1	0.006
BO	1	0.018
NN	5	0.035
All bond angles	75	2.73 ^b
Involving F	47	3.07
Not involving F	28	2.14

^{*a*} In angstroms. ^{*b*} In degrees.

C. Proton and Electron Affinities. Shown in Table VI is a comparison of calculated proton and electron affinities with some recently determined values. The agreement is generally satisfactory.

D. Molecular Geometries.¹⁹ Table VII shows error statistics for geometries calculated by MNDO while Table VIII gives detailed comparisons with experiment. The results are very much superior to those given by MINDO/3,^{4c} where totally incorrect geometries were predicted for certain molecules (e.g.,

Table VIII. Molecular Geometries

	lecular G						
Molecule	Point group	Calcd (obsd) values for geometrical variables ^a	Ref	Molecule	Point group	Calcd (obsd) values for geometrical variables ^a	Ref
HF CH₃F	$C_{\infty v}$ C_{3v}	HF 0.956 (0.917) CH 1.118 (1.098),* CF 1.347	b c	<u>Г</u>	D ₆ h	CC 1.434 (1.408), CF 1.317 (1.324)	q
CH ₂ F ₂	C_{2v}	(1.382),* HCF 110.6 (108.5)* CH 1.129 (1.093), CF 1.352 (1.358), HCH 108.2 (111.8), FCF 106.8 (108.3)	d		C_{2v}	C ¹ C ² 1.524 (1.52), C ² C ³ 1.364 (1.355), C ³ C ⁴ 1.438 (1.423), C ⁴ C ⁵ 1.403 (1.411), C ² C ⁷	r
CHF ₃	C_{3v}	CH 1.136 (1.098), CF 1.353 (1.332), HCF 111.5 (1105)	d	0		1.420 (1.339), CF 1.338 (1.329), FCF 107.3 (109.4)	
CF ₄	T _d	CF 1.347 (1.321)*	e	HC≡=CF	C∞v	CC 1.192 (1.198), CF 1.277 (1.278)	\$
H ₂ H ₂ C C	C _s	CH 1.108 (1.09), CC 1.547 (1.505), CF 1.352 (1.398), H ¹ CC	f	HCOF	C _s	CO 1.222 (1.181), CF 1.328 (1.338), OCF 117.9 (122.5)	d
H ₃ H ₁	C	(110.4), H ² CC 111.6 (109.7)		CH₃COF	C _s	CO 1.226 (1.181), CF 1.332 (1.348), CCO 126.5 (128.3), CCF 117.5 (110.3)	r
Cr ₃ Cn ₃	C _{3U}	(1.530), CF 1.358 (1.335), HCC	е	F ₂ C == O	$C_2 v$	CO 1.219 (1.170),* CF 1.316 (1.317),* FCO 124.1 (126.2)*	и
CF,CF,	D ₂ d	(111.0) CC 1.674 (1.545). CF 1.346	h	(CF ₃) ₂ CO	C_{2v}	CC 1.607 (1.549), CO 1.208 (1.246), CF 1.351 (1.335), CCC	v
, ,	34	(1.326), CCF 110,7 (109,8)		HOF	C _s	118.8 (121.3), FCC 111.6 (110.3) HO 0.964 (0.966), OF 1.277	w
F	C ₂ 0	CH 1.096 (1.082), $C^{2}C^{2}$ 1.528 (1.464), $C^{2}C^{3}$ 1.556 (1.553), FCF	i	F ₂ O	C_{2v}	(1.442), HOF 107.9 (96.8) OF 1.281 (1.412),* FOF 109.1	d
$\bigtriangleup^{\mathbf{F}}$	D_{3h}	CC 1.607 (1.505), CF 1.329 (1.314), FCF 108.4 (112.2)	j	CF ₃ OF	C ₈	(103.2)* CO 1.443 (1.395), CF 1.342 (1.319), OF 1.274 (1.421), FCF 110.7 (109.4), COE 110.7 (104.8)	x
F_F	D_{2d}	CC 1.646 (1.566), CF 1.341, 1.333 (1.333), ECF 107 1 (109 9)	k	NF ₃	C_{3v}	NF 1.315 (1.365),* FNF 106.1 (102.3)*	У
H ₂ F	C 8	H ¹ C 1.099 (1.076),* H ² C 1.087 (1.090) H ³ C 1.085 (1.085) * CC	l	FNNF	C_{2v}	NN 1.240 (1.214), NF 1.281 (1.410), NNF 121.6 (114.4)	z
		(1.050), H°C 1.088 (1.085),* CC 1.350 (1.333),* CF 1.324 (1.349)* HICC 1.22 0 (1.27.7)*		FNNF	C_{2h}	NN 1.261 (1.231), NF 1.277 (1.396), NNF 112.1 (105,5)	Z
		H ² CC 124.5 (121.4),* H ³ CC 120.9 (123.9), CCF 123.3		F_2NNF_2	C_{2h}	NN 1.519 (1.495), NF 1.302 (1.372), NNF 106.2 (101.4), FNNF 66 5 (64)	aa
CH₂FCH₂F	<i>C</i> ₂	(121.0)* CC 1.576 (1.535), CF 1.348 (1.394) HCC 108 5 (108 3) CCF	g	HNF ₂	Cs	NF 1.309 (1.400), FNF 107.4 (102.9)	bb
न न	C	112.9 (108.3), FCCF 60.6 (74.5)	,	H₃ H₂▲N	Cs	CH 1.109 (1.091), CN 1.539 (1.449), NF 1.310 (1.413), CNF	сс
	C ₂ 0	(1.331), CF 1.320 (1.335), CCH 121.4 (121.6), CCF 123.8 (123.7)	ι	H _i F	•	110.5 (104.6), H ² CN 113.9 (110.4), H ² CN 107.1 (106.2), H ¹ CNF 58.6 (52.9)	
	C₂h	HC 1.097 (1.080), CC 1.309 (1.329), CF 1.322 (1.344), CCH 124.5 (129.3), CCF 120.9 (119.3)	1		C20	CN 1.486 (1.426), NN 1.241 (1.293), CF 1.324 (1.315), FCF 112.7 (111.8), NCN 49.4 (54.0)	dd
F F H	C ₂ v	HC 1.086 (1.075), CC 1.359 (1.316), CF 1.325 (1.324), CCH 122.2 (120.4), CCF 125.4	I	$CF_3 N = NCF_3$	₃ C ₂ v	CN 1.531 (1.490), NN 1.191 (1.236), CF 1.343 (1.326), NNC	ee
F. F.	Cs	(125.3) HC 1.095 (1.073), CF ⁵ 1.317, CF ⁴ 1.321, CF ³ 1.322 (1.336)	l	$F_2N^1-CN^2$	Cs	132.0 (133.0), NCF 109.0 (109.3) N ¹ C 1.441 (1.386), CN ² 1.157 (1.158), NF 1.312 (1.399),	ff
F_3 H_6		CC 1.376 (1.309), CCH 122.8 (127.2), CCF ³ 123.4 (125.4),		501	C	N ¹ CN ² 173.5 (173.9), CN ¹ F 109.6 (105.4)	
C ₂ F ₄	D_{2h}	CCF ⁵ 121.4 (118.8) CC 1.381 (1.311),* CF 1.318	1	FUN CE CN	C∞v	CN 1.160 (1.139), * CF 1.275 (1.262)* CC 1.498 (1.461), CN 1.158	s d
F→Ĩ	$C_2 v$	(1.319),* CCF 124.2 (123.8)* C ¹ C ² 1.367 (1.348), C ² C ³ 1.570	т	Cr ₃ CN	$C_{3}v$	(1.153), CF 1.355 (1.335), FCC	ч
- L.4 • 1		$(1.506), C^{2}C^{2} 1.674 (1.591), C^{3}F$ $1.338 (1.339), C^{3}F 1.297 (1.312),$ $C^{1}C^{2}F 135.3 (136.6), C^{2}C^{3}C^{4}$ 84.4 (85.4)		$\stackrel{F}{\underbrace{\bigvee}_{N \bigvee N}} \stackrel{F}{\underbrace{\bigvee}_{N \bigvee N}} F$	D_{3h}	CN 1.323 (1.333), CF 1.303 (1.310), CNC 114.0 (113.0)	gg
3=2	<i>C</i> ₂ <i>v</i>	HC 1.092 (1.083), C ¹ C ² 1.323 (1.302), C ² C ³ 1.301 (1.306), CF 1.325 (1.323), CCH 1.22 8	n	F F FNO	Cs	NO 1.161 (1.136),* NF 1.305	hh
\mathbf{F}_{1}	$C_{2\nu}$	(121.2), CCF 125.2 (125.0) HC 1.09 (1.081), C ¹ C ² 1.422	0	F₃NO	$C_{\mathfrak{zv}}$	(1.514),* ONF 113.8 (110.1)* NO 1.234 (1.158), NF 1.355	ii
	20	$(1.383), C^2C^3$ 1.404 $(1.395), C^3C^4$ 1.406 $(1.397), CF$ 1.326	-	BF ₃	D_{3h}	(1.451), ONF 114.2 (119.1) BF 1.316 (1.310)*	ij
Ā		$(1,354), C^{6}C^{1}C^{2}$ 120.5 (123.4), $C^{1}C^{2}C^{3}$ 119.1 (117.9)		B_2F_4 HBF ₂	$D_2 d C_2 v$	BB 1.747, BF 1.310, BBF 123.9 BF 1.316 (1.311), FBF 114.8 (118.3)	kk
F f f f f f f f f f f	C ₂ v	HC ² 1.090 (1.107), C ¹ C ² 1.420 (1.383), C ³ C ⁴ 1.420 (1.385), C ⁴ C ⁵ 1.404 (1.405)	p	F₂BC == CH	C_{2v}	H109 HC 1.053 (1.058), BC 1.493 (1.513), CC 1.200 (1.206), BF 1.320 (1.323), FBF 114.2 (116.5)	U

Dewar, Rzepa / MNDO Results for Molecules Containing Fluorine

Table V1II (Continued)

Molecule	Point group	Calcd (obsd) values for geometrical variables ^a	Ref	Molecule	Point group	Calcd (obsd) values for geometrical variables ^a	Ref
H_2N-BF_2	$C_2 v$	HN 0.993 (1.003), BN 1.408 (1.402), BF 1.325 (1.328), FBF	mm	$\begin{array}{c} BF_2 \\ CF_2 \\ CF$	C_{2v} C_{2v}	BF 1.291, FBF 125.6 CF 1.342, FCF 106.4 CF 1.370, FCF 106.4	
$\mathbf{H}_{\mathbf{O}} = \mathbf{F}_{\mathbf{F}_{4}} \mathbf{F}_{\mathbf{F}_{4}}$	C _s	HO 0.945 (0.941), BO 1.362 (1.344), BF ³ 1.317, BF ⁴ 1.324 (1.323), FBF 118.5 (118.0),	nn		$C_{2v} \\ C_{2v} \\ C_{2v} \\ T_d$	NF 1.308, FNF 107.6 BF 1.359, FBF 105.2 BF 1.390	
F ₂ HCF	D∞h Cs	OBF 123.0 (122.8) FF 1.266 (1.418)* HC 1.120 (1.121), CF 1.285	d d	$\mathbf{F} - \mathbf{C} = \mathbf{H}_{\mathbf{H}_{a}}^{\mathbf{H}_{1}}$	7+* Cs	H ¹ C 1.112, H ² C 1.201, H ² H ³ 1.447, CF 1.292, H ¹ CF 115.8, H ² CF 114.6	
:CF ₂	$C_2 v$	(1.314), HCF 111.1 (101.6) CF 1.304 (1.304), FCF 108.3 (104.8)	00	F-C	$_{7^{+}}$ C_{2v}	FCF 111.0, HCF 115.0	
$CF_3 \cdot NF_2 \cdot$	$C_{3v} C_{2v}$	CF 1.312 (1.33), FCF 115.4 (112) NF 1.271 (1.350), FNF 109.7 (103.3)	d pp	H—CF ₃ ^{7+•}	C ₃ v	HC 1.380, CF 1.314, HCF 102.8	

^aBond length $A^{i}B^{j}$ (in A), bond angle $A^{i}B^{j}C^{k}$ (in degrees), and dihedral angle $A^{i}B^{j}C^{k}D^{l}$ (in degrees) of A-B measured clockwise with respect to C-D. bG. A. Knipers, D. F. Smith, and A. N. Nielsen, J. Chem. Phys., 25, 275 (1956). CJ. L. Duncan, J. Mol. Struct., 6, 447 (1970). ^dD. R. Stull and H. Prophet, "JANAF Thermochemical Tables", 2nd ed, NSRDS-NBS 37, 1971. eA. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data, 3, 117 (1974). fS. S. Chen, A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, ibid., 4, 441 (1975). gJ. R. Lombardi, W. Klemperer, M. B. Robin, H. Basch, and N. A. Kuebler, J. Chem. Phys., 51, 33 (1969). ^hK. L. Gallaher, A. Yokozeki, and S. H. Bauer, J. Phys. Chem., 78, 2389 (1974). ⁱA. T. Perretta and V. W. Laurie, J. Chem. Phys., 62, 2469 (1975). ^jJ. F. Chiang and W. A. Bernett, Tetrahedron, 27, 975 (1971). ^kC. H. Chang, R. F. Porter, and S. H. Bauer, J. Mol. Struct., 7, 89 (1971). ¹J. L. Carlos, R. R. Karl, and S. H. Bauer, J. Chem. Soc., Faraday Trans. 2, 177 (1974). mK. L. Gallaher, Y. C. Wang, and S. H. Bauer, J. Mol. Struct., 25, 35 (1975). ⁿJ. R. Durig, Y. S. Li, C. C. Tong, A. P. Zens, and P. D. Ellis, J. Am. Chem. Soc., 96, 3805 (1974). ^oL. Nygard, 1. Bojesen, T. Pedersen, and J. Rastrup-Andersen, J. Mol. Struct., 2, 209 (1968). PE. J. H. Van Schaick, H. J. Geise, F. C. Mijlhoff, and G. Renes, J. Mol. Struct., 16, 389 (1973). 9 S. H. Bauer, K. Katada, and K. Kimura in "Structural Chemistry and Molecular Biology", A. Rich and N. Davidson, Ed., W. H. Freeman, San Francisco, Calif., 1968, pp 653-670. rR. Pozzi, D. R. Ramaprasad, and E. A. C. Lucken, J. Mol. Struct., 28, 111 (1975). * J. K. Tyler and J. Sheridan, Trans.

NF₃, CF₂, C₂F₄, C₂F₆). All these "problem" molecules are well reproduced by MNDO and the average error in bond angle (2.7°, Table VII) is almost the same as for molecules free from fluorine.² Indeed, there are no cases where MNDO predicts geometries that are greatly in error and the rotational

Faraday Soc., 59, 2661 (1963). ^tR. W. Davis and M. C. L. Gerry, J. Mol. Spectrosc., 57, 118 (1975). ^uJ. H. Carpenter, ibid., 50, 182 (1974). ^vR. L. Hildebrandt, A. L. Andreassen, and S. H. Bauer, J. Phys. Chem., 74, 1586 (1970). WM. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data, 4, 1 (1975). * F. P. Diodati and L. S. Bartell, J. Mol. Struct., 8, 395 (1971). ^y M. Otake, C. Matsumura, and Y. Morino, J. Mol. Spectrosc., 28, 316 (1968). ² R. K. Bohn and S. H. Bauer, Inorg. Chem., 6, 309 (1967). aa M. M. Gilbert, G. Gundersen, and K. Hedberg, J. Chem. Phys., 56, 1691 (1972). bb D. R. Lide, ibid. 38, 456 (1963). cc L. Pierce, R. G. Hayes, and J, F. Beecher, ibid., 46, 4352 (1967). dd J. L. Hencher and S. H. Bauer, J. Am. Chem. Soc., 89, 5527 (1967). ee C. H. Chang, R. F. Porter, and S. H. Bauer, ibid., 92, 5313 (1970). ff P. L. Lee, K. Cohn, and R. H. Schwendeman, *Inorg. Chem.*, 11, 1920 (1972). *^{gg}J*. Schlupf and A. Weber, *J. Mol. Spectrosc.*, **54**, 10 (1975). ^{*hh*} K. S. Buckton, A. C. Legon, and D. J. Millen, Trans. Faraday Soc., 65, 1975 (1969). ⁱⁱV. Plato, W. D. Hartford, and K. Hedberg, J. Chem. Phys., 53, 3488 (1970). ^{jj}S. G. W. Ginn, J. K. Kenney, and J. Overend, *ibid.*, 48, 1571 (1968). kk T. Kasuya, W. J. Lafferty, and D. R. Lide, ibid., 48, 1 (1968). ¹¹W. J. Lafferty and J. J. Ritter, J. Mol. Spectrosc., 38, 181 (1971). mm F. L. Lovas and D. R. Johnson, J. Chem. Phys., 59, 2347 (1973). nn H. Takeo and R. F. Curl, ibid., 56, 4314 (1972). ooW. H. Kirchoff, D. R. Lide, and F. X. Powell, J. Mol. Spectrosc. 47, 491 (1973). pp R. D. Brown, F. R. Burden, P. G. Godfrey, and 1. R. Gillard, ibid., 52, 301 (1974).

barrier in C_2F_6 is quite well reproduced (Table V).

MNDO also avoids another error of MINDO/3, i.e., its tendency to predict excessive stability for π complex structures with apical fluorine in compounds such as C₂H₄F⁺, CF₃CH₂⁻, CH₂FCH₂F, or N₂F₄.^{4c} The calculated MNDO geometries

Table 1X. First Vertical Ionization Potentials 1P1

1P,, eV						1P ₁ ,	eV		
Molecule	Obsd	Calcd ^a	Error	Ref	Molecule	Obsd	Calcd ^a	Error	Ref
HF	16.03	14.82	-1.21	Ь	(CF ₃),CO	12.09	12,99	0.90	f
CH ₃ F	13.31	13.05	-0.26	с	NF.	13.73*	13.93	0.20	m
CH ₂ F ₂	13.17	13.09	-0.08	с	FNNF (trans)	13.4	13.00	-0.40	f
CHF,	14.67	14.57	-0.10	с	N ₂ F ₄ (gauche)	12.84	13.02	0.18	n
CF.	16.23*	16.81	0.58	с	N ₁ F ₁ (trans)		12.61		
CH,CH,F	12,43	12.61	0.18	d	N				
CH ₃ CHF,	12.8	12.73	-0.07	d	F.C.	11 79	12.05	0.27	£
CH,CF,	13.8	14.01	0.21	d	N N	11.70	12.03	0.27	J
C,F,	14.6	14.50	-0.10	d	CF, NNCF, (cis)	11.35	12.27	0.92	f
CH ₂ =CHF	10.58	10.18	-0.40	е	(NCF), (1,3,5)	12.0	12.71	0.71	h
$CH_2 = CF$,	10.72	10.45	-0.27	е	^				
CHF=CHF (cis)	10.43	10.18	-0.25	f	ſ◯ ⊢ ₽	10.27	10.72	0.45	h
CHF=CHF (trans)	10.38	10.19	-0.19	f	N	10121	20172	0.10	
CHF=CF,	10.53	10.46	-0.07	f	FNO	12 94	12 93	-0.01	0
$CF_{,}=CF_{,}$	10.54*	10.75	0,21	f	FNO	1351	12.99	-0.01	0
C,H,F	9.19	9.47	0.28	g	BE	15,31	16.22	-0.32	n
$C_6H_4F_2(1,2)$	9.68	9.69	0.01	g	BF(D)	13.25	13.46	0.27	p
$C_{6}H_{4}F_{2}(1,3)$	9.68	9.73	0.05	g	$E_{2} 4 (U_{2}d)$	15,20	11.60	0.20	ų
$C_{6}H_{4}F_{2}(1,4)$	9.15	9.56	0.41	g	1 2DINI12		11.09	(Cont	tinued)

	eV				1P ₁ , eV				
Molecule	Obsd	Calcd ^a	Error	Ref	Molecule	Obsd	Calcd ^a	Error	Ref
C ₆ F ₆	10.12	10.77	0.65	h	F				
FC=CH	11,30	11.07	-0.23	i	N N	10.70	11 4 2	0.64	£
HOF	13.0	12.75	-0.25	i	FB	10,79	11.45	0.64	J
CF,CH,OH	11.74	12.38	0.64	, k	N ^r				
CF OF	13.64	14.23	0.59	k	F,	15,83	15.25	-0.58	r
OF	13.26*	13.52	0.26	f	:ČF,	12,27	12.18	-0.09	5
CH_COF	11.80	12.21	0.41	i	CF .		11,20		t
F.CO	13.60	13.62	0.02	, f	NF ₂ .	12.10	12.23	0.13	n,t
2			0102	5	OF		14.11		t

^aCalculated using Koopmans' theorem. ^bJ. Berkowitz, Chem. Phys. Lett., 11, 21 (1971). ^cM. S. Banna, B. E. Mills, D. W. Davis, and D. A. Shirley, J. Chem. Phys., 61, 4780 (1974). ^dP. Sauvageau, J. Doucet, R. Gilbert, and C. Sandorfy, *ibid.*, 61, 391 (1974). ^eR, F. Lake and H. Thompson, Proc. R. Soc. London, Ser. A, 315, 323 (1970). ^fC. R. Brundle, M. B. Robin, N, A. Kuebler, and H. Basch, J. Am. Chem. Soc., 94, 1451 (1972). ^gD. G. Streets and G. P. Caesar, Mol. Phys., 26, 1037 (1973). ^hC. R. Brundle, M. B. Robin, and N. A. Kuebler, J. Am. Chem. Soc., 94, 1466 (1972). ⁱE. Heilbronner, K. A. Muszkat, and J. Schäublin Helv. Chim. Acta, 54, 58 (1971). ^jJ. Berkowitz, E. H. Appleman, and J. L. Dehmer, Chem. Phys. Lett., 19, 334 (1973). ^kM. B. Robin and N. A. Keub-

ler, J. Electron Spectrosc. Relat. Phenom., 1, 13 (1972).¹D. Chadwick and A. Katrip, *ibid.*, 3, 39 (1974). ^mP. J. Bassett and D. R. Lloyd, J. Chem. Soc., Dalton Trans., 248 (1972). ⁿA. B. Cornford, D. C. Frost, F. G. Herring, and C. A. McDowell, J. Chem. Phys., 54, 1872 (1971). ^oD. C. Frost, S. T. Lee, C. A. McDowell, and N. P. C. Westwood, J. Electron Spectrosc. Relat. Phenom., 7, 331 (1975). ^pT. E. H. Walker and J. A. Horsley, Mol. Phys., 21, 939 (1971).
^qN. Lynaugh, D. R. Lloyd, M. F. Guest, M. B. Hall, and 1. H. Hillier, J. Chem. Soc., Faraday Trans. 2, 68, 2192 (1972). ^r Reference 21.
^gJ. M. Dyke, L. Golob, N. Jonathan, A. Morris, and M. Okuda, J. Chem. Soc., Faraday Trans. 2, 70, 1828 (1974). ^tCalculated from the energy of the vertical singlet cation.

Table X. Higher Vertical Ionization Potentials IP

		11	P, eV					IP, eV	
Molecule	Orbital ^a	Obsd	Calcd ^b	Ref	Molecule	Orbital ^a	Obsd	Calcd ^b	Ref
CH ₃ F	2e	13.31	13.05	с		7a1	19.15	19.54	
	le	16.55	17.17			1b2	19.8	19.68	
	5a1	17.56	17.42			3b ₁	21.1	20.68	
	4a1	23.48	27.54			6a1	23.4	23.4	
	3a ₁	38.41	46.24		F ₂ O	2b ₂	13.25	13.52 15.4 ^f	d
CF4	lt ₁	16.33	16.81	с		6a1	16.10	16.14 16.4	
	4t ₂	17.41	17.12			4b1	16.44	16.62 17.2	
	le	18.43	17.47			la ₂	18.50	17.00 18.4	
	3t ₂	22.14	21.24			1b2	19.55	19.36 20.8	
	4a1	25.11	24.46			5a1		20.01 20.2	
	2t ₂	40.30	45.52			3b1	20.7	22.09 20.0	
	3a1	43.81	53.70		FNNF (trans)	$7a_g$	13.4	13.00	d
C_2F_4	$2b_{2u}$	10.52	10.74	d		$2a_u$	14.1	13.40	
	6ag	15.95	15.73			6b _u		16.51	
	4b1u	16.4	16.62 <i>°</i>			6ag		17.41	
	$4b_{2g}$	16.6	16.64 <i>°</i>			1bg		17.70	
	lau	16.9	16.80			lau	18.7	19.26	
	1 b 3 g	17.6	16.86			5bu	19.8	19.54	
	5b _{3u}	18.21	17.32			5ag	21.0	21.38	
	1b _{1g}		18.38			4b _u	22.7	25.01	
	3b _{2g}		19.41		FNO	10a'	12.94	12.93	g
	1 b _{2µ}		19.58			2a''	13.58	15.23	Ũ
	3b1u	19.46	20.57				to		
	5a,	21.0	20.79			9a′	15.59	15.53	
	4b31	22.5	22.54			la″	17.85	18.74	
	4a,		30.32			8a'	to	18.75	
F ₂ CO	5b1	13.6	13.61	d		7a′	19.61	20.73	
	2b ₂	14.6	14.18		F_2	1Π _g	15.83	15.25	h
	8a1	16.6	16.46			IΠŭ	18.8	19.22	
	4b ₁	17.2	16.97			$3\Sigma_{g}^{+}$	~21.0	20.9	
	la ₂		17.11			-			

^a The numbering of the MOs refers to a basis set including 1s orbitals for ease of comparison with ab initio calculations. The assignments are identical with those in the literature, with certain exceptions noted below. ^b Calculated using Koopmans' theorem. ^c M. S. Banna, B. E. Mills, D. W. Davis, and D. A. Shirley, J. Chem. Phys., **61**, 4780 (1974). ^d C. R. Brundle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc., **94**, 1451 (1972). See also J. A. Pappas, J. Mol. Struct., **22**, 69 (1974). ^e Ab initio calculations (see ref d) predict the ordering of these two orbitals to be reversed. See also ref f and text. ^f Orbital energies using Koopmans' theorem from ref d. Note that the MNDO ordering of the 1b₂ and 3b₁ orbitals disagrees with ref d, but is in agreement with the ordering reported in ref 22. These latter results were obtained by applying third-order perturbation corrections to Koopmans' theorem eigenvalues. ^g D. C. Frost, S. T. Lee, C. A. McDowell, and N. P. C. Westwood, J. Electron Spectrosc. Relat. Phenom., **7**, 331 (1975). ^h Reference 21. See text for further discussion.

Table XI. The "Perfluoro" Effect for Ethylenes

	Obsd ^a 1st IP, eV	Δ^b	MNDO 1st IP, eV	Δ^b
C ₂ H₄	10.51	2.34	10.18	2.66
H ₂ C=CHF	10.58	3.21	10.17	3.23
$H_2C = CF_2$	10.72	4.07	10.45	4.49
FHC=CHF (cis)	10.43	3.54	10.18	3.36
FHC=CHF (trans)	10.38	3.52	10.19	3.23
$F_2C = CHF$	10.53	4.11	10.46	4.04
$F_2C = CF_2$	10.52	5.43	10.74	4.99

^a C. R. Brundle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc., **94**, 1451 (1972). ^b Difference (in eV) between the π and the first σ level.

are all qualitatively correct; indeed the bridged form of $C_2H_4F^+$ is 40 kcal higher in energy than the classical isomer.

While qualitatively correct, the MNDO results do show some quantitative failings. As can be seen in Table VII, a regular trend is discernible in the mean errors for the C-F, N-F, O-F, and F-F bond lengths. A similar error was noted previously² for O-O and could not be eliminated except at the expense of using bond parameters for the resonance integrals

Table X11. Dipole Moments μ

and core-core repulsions. There is also a quantitative failure in the calculated shrinkage of the C-F bond length on successive fluorination of methane. As noted previously, highly fluorinated compounds also tend to be too unstable.

E. Ionization Energies. The mean absolute error for 43 molecules in the first vertical ionization energy is 0.34 eV, compared with 1.47 eV for MINDO/ 3^{4c} (Table IX). The symmetry of the HOMO, in all cases where it is known, is correct. Both the energies and symmetries of the higher cationic states, as predicted by Koopmans' theorem, agree very well with experiment (Table X).

Probably the most notorious case where Koopmans' theorem has failed to predict the correct orderings of cationic states is for the N₂ and F₂ molecules,²⁰ and the energies of these states obtained using the Hartree–Fock method have to be corrected using suitable methods.²⁰ It is therefore interesting that the MNDO orbital energies for F₂ (and also N₂²) agree with the experimental assignments for the doublet cationic states²¹ (Table X), but not with ab initio RHF eigenvalues.²⁰ The MNDO values also agree with the calculations of Cederbaum,²⁰ where corrections for electron correlation and relaxation were made with a perturbation approach using Green's functions. It is significant in this connection that MNDO makes allowance for electron correlation in the neutral ground

	μ,	D				μ,	D		
Molecule	Obsd a	Calcd	Error	Ref	Molecule	Obsd a	Calcd	Error	Ref
HF	1.83	1.99	0.16	b	(CF,),CO	0.65	0.66	0.01	е
CH ₄ F	1.86*	1.76	-0.10	С	CF CO, H (trans)	2.28	2.44	0.16	d
CH ₁ F,	1.96	2,21	0.25	d	HOF	2.23	1.81	-0.42	т
CHF,	1.65	2.23	0.58	с	F,O	0.30	0.33	0.03	d
CH,ČH,F	1.96	1.87	-0.09	d	CF,OF	0.33	0.09	-0.24	n
CH, CHF,	2.30	2,50	0.20	d	FNNF (cis)	0.16	0,02	-0.14	е
CH,FCH,F (gauche)	2.67	2.84	0.17	е	NF ₃	0.24*	0,20	-0.04	d
CH,CF,	2.32	2.87	0.55	d	HNF,	1.92	1.89	-0.03	е
7					CH₃ŃF₂	2.57	2,61	0.03	0
	2.32	2.72	0.40	f	N F	0.0	0.56	0.56	
	1 / 3 *	1 70	0.27	đ	" N F	0.0	0.30	0.30	ρ
$H_2C = CHF$ (cis)	2.42	2.85	0.27	d	F_CN	217*	0.89	_1.28	Ŀ
$F_{C}=CH_{c}$	1.39	2.03	0.64	c	CF.CN	1.26	0.35	-0.91	â
F.C=CHF	1.30	1.82	0.52	g	3			••••	7
C ₄ H ₄ F	1.66	1.96	0.30	ď		0.09	0.50	0.20	
$C_{H_{r}}^{\prime}F_{r}$ (1.2)	2.59	3.36	0.77	ĥ	C - r	0.90	0.39	-0.39	r
$C_{6}H_{4}F_{2}(1,4)$	1.51	1.93	0.42	h	FNO	1.81	0.60	-1.21	d
∽ .F					FNO.	0.47	0.65	0.18	e
	3.57	3.25	-0.32	i	HBF	0.97	1.33	0.36	e
✓ F					CH ₃ BF ₂	1.67	1.98	0.31	s
=	2.07	2.60	0.53	j	BF2	1.74	2.50	0.76	t
	0.72	1 5 7	0.94	le.	$-BF_2$	1.88	2.49	0.61	е
	0.73	1.57	0.04	, K	H,NBF,	2.60	2.85	0.25	и
	2.78	3.72	0.73	1	HOBF,	1.86	2.10	0.24	v
	2.02	2.30	0.40	u d	:CF,	0,47	0.04	-0.43	Ŵ
Cn₃COr F CO	2.90	2.90	_0.00	u e	NF ₂ .	0.14	0.01	-0.13	x
1 200	0.75	0.01	-0.14	c					

^a All dipole moments, with the exceptions of CF₃CO₂H and (CF₃)₂CO, were obtained from measurements of the Stark effect in the microwave spectrum. ^bJ. S. Muenter and W. Klemperer, J. Chem. Phys., **52**, 6033 (1970). ^cS. C. Wofsy, J. S. Muenter, and W. Klemperer, *ibid.*, **55**, 2014 (1971). ^dA. L. McClellan, "Tables of Experimental Dipole Moments", Vol. 1, W. H. Freeman, San Francisco, Calif., 1963. ^eIbid., Vol. 2, 1974. ^fA. T. Perretta and V. W. Laurie, J. Chem. Phys., **62**, 2469 (1975). ^eA. Bhaumik, W. V. F. Brooks, and S. C. Dass, J. Mol. Struct., 16, 29 (1973). ^hL. Nygaard, E. R. Hansen, R. Hansen, J. Rastrup-Andersen, and G. O. Sorensen, Spectrochim. Acta, Part A, 23, 2813 (1967). ⁱR. Pozzi, D. R. Ramaprasad, and E. A. C. Lucken, J. Mol. Struct., 28, 111 (1975). ^jJ. R. Durig, Y. S. Li, C. C. Tong, A. P. Zens, and P. D. Ellis, J. Am. Chem. Soc., **96**, 3805 (1974). ^kJ. K. Tyler and J. Sheridan, Trans. Faraday Soc., **59**, 2661 (1963). ⁱR. W. Davis and M. C. L. Gerry, J. Mol.

Spectrosc., 57, 118 (1975). ^mS. L. Rock, E. F. Pearson, E. H. Appleman, C. L. Norris, and W. H. Flygare, J. Chem. Phys., 59, 3940 (1973). ⁿP. Buckley and J. P. Weber, Can. J. Chem., 52, 942 (1974). ^oL. Pierce, R. G. Hayes, and J. F. Beecher, J. Chem. Phys., 46, 4352 (1967). ^pJ. R. Lombardi, W. Klemperer, M. B. Robin, H. Basch, and N. A. Kuebler, J. Chem. Phys., 51, 33 (1969). *q*P. B. Foreman, K. R. Chien, J. R. Williams, and S. G. Kukolich, J. Mol. Spectrosc., 52, 251 (1974). ^rS. Doraiswamy and S. D. Sharma, Chem. Phys., 6, 76 (1974). ^sR. E. Naylor and E. B. Wilson, J. Chem. Phys., 26, 1057 (1957). ^tJ. R. Durig, R. O. Carter, and J. D. Odom, Inorg. Chem., 13, 701 (1974). ^wF. L. Lovas and D. R. Johnson, J. Chem. Phys., 59, 2347 (1973). ^vH. Takeo and R. F. Curl, *ibid.*, 56, 4314 (1972). ^wW. H. Kirchhoff, D. R. Lide, and F. X. Powell, J. Mol. Spectrosc., 47, 491 (1973). ^xR. D. Brown, F. R. Burden, P. G. Godfrey, and I, R. Gillard, *ibid.*, 52, 301 (1974).

		$q_{\mathbf{X}}$,	le
Molecule	Atom x	STO-3G b	MNDO
HF	Н	0.228	0.287
	F	-0.228	-0.287
CH ₃ F	Н	-0.004	0.005
•	С	0.169	0.261
	F	-0.157	-0.246
CF₄	С	0.674	0.815
	F	-0.169	-0.204
	Н,	0.034	0.074
C=C	H,	0.089	0.057
	H ₃	0.090	0.064
	C,	0.201	0.110
	C,	-0.302	-0.113
	F	-0.110	-0.192
NF ₃	Ν	0.147	0.424
	F	-0.049	-0.141
	H ₂	0.077	0.079
$\mathbf{F} \xrightarrow{1} \langle \bigcirc \rangle_{+}$	H ₃	0.057	0.066
	H₄	0.049	0.065
	C ₁	0.268	0.146
	C ₂	-0.166	-0.087
	C3	-0.025	-0.036
	C4	-0.064	-0.065
	F	-0.188	-0.181
HC≡=CF	н	0.221	0.181
	С,	0.184	0.037
	C_2	-0.384	-0.136
	F	-0.021	-0.082
F ₂ CO	С	0.568	0.605
	0	-0.336	-0.274
	F	-0.116	-0.165

^a Defined in ref 2. ^b Reference 23.

state species via the parameters, 1 although relaxation effects could of course not be allowed for in this manner.

Further examples of this phenomenon are the molecules HOF, CF₂, FNO, and F₂O,^{20,22} where again second-and third-order perturbational corrections result in inversion of the ordering of certain σ and π orbitals. The MNDO eigenvectors for HOF and F_2O are in agreement with these calculations, but not for CF_2 and FNO,²² where the relevant orbitals are found by MNDO to be almost degenerate in energy, with the π orbital lower than the σ .

Another case where MNDO does very well is predicting the so called "perfluoro effect" (Table XI), the π - σ splitting agreeing very well with the photoelectron results.

F. Dipole Moments and Charge Distributions. Table XII lists calculated and observed dipole moments for 46 molecules. The average error in the MNDO values is 0.38 D. In only three cases does the error exceed 0.9 D, namely, FNO (-1.21 D), F_3CCN (-0.91 D), and FCN (-1.28 D). The error in the case of FNO may be related to the error in the predicted FN bond length (1.305 vs. 1.514 Å; Table VIII). It is interesting to note that RH calculations, using the STO-3G or 4-31G basis sets, also underestimate the length of this bond.¹⁷ The errors in the other cases suggest that MNDO, while better than MINDO/3, still fails to deal completely adequately with the CN group. The calculated dipole moment for acetonitrile was also too small (by 1.29 D²).

The calculated charge distributions (Table XIII) are generally similar to those reported by Pople and Hehre²³ using the STO-3G basis set, although there are significant differences in certain cases (e.g., fluorobenzene). These differences would probably be reduced if a larger basis were used.

Conclusions

The primary objective of the research reported in this series of papers is the development of a theoretical procedure accurate enough, reliable enough, and cheap enough to serve as a

practical tool in the study of chemical phenomena. MINDO/3 has proved useful in this connection²⁴ but it suffers from a number of obvious shortcomings. In particular, the errors in the calculated energies are too large, there are cases where it breaks down badly, and the use of bond parameters makes difficult its extension to "inorganic" elements, in particular metals. MNDO clearly represents an important advance over MINDO/3 because the results it gives are almost uniformly much better, because there seem to be no situations where it breaks down, and because it contains many fewer parameters (owing to the use of atomic parameters instead of bond parameters) and so should be much more easily extended to additional elements. Since, moreover, the time required for computation is only ca. 25% greater than for MINDO/3, even for calculations involving complete geometry optimization or the location of transition states,²⁵ MNDO seems destined to prove of major value in the study of chemical phenomena.

Naturally MNDO does not represent the end of the semiempirical SCF MO road but it may prove a rather prolonged stopping point. The NDDO approximation is the simplest version of the RH method that is free from obviously unjustifiable assumptions^{1,26} and any attempt to remove the simplifying assumptions made in it, in particular the core approximation or the neglect of diatomic differential overlap, would lead to an enormous increase in computing time. Our uniquely extensive experience with parametrization also suggests that no major improvement in MNDO is likely to be brought about by changes in this respect, except by an increase in the number of parameters (e.g., use of bond parameters instead of atomic ones) which would render its extension to other elements impracticable. The one area where useful progress might be made is in drawing a distinction between the potential energy and the nuclear kinetic energy of molecules. At present both are lumped together, MNDO being parametrized to reproduce heats of formation, not energies of formation. Since it has been shown²⁷ that MINDO/3 gives good estimates of molecular vibration frequencies and derived thermodynamic properties, and since preliminary studies suggest that MNDO is even better in these respects, it should be possible to parametrize MNDO to reproduce equilibrium energies of molecules, the kinetic terms (zero point energy and specific heat) being calculated and added to the equilibrium energy to give an estimate of the heat content.

Acknowledgment. This work was supported by the Air Force Office of Scientific Research (Grant AFOSR 75-2749) and the Robert A. Welch Foundation (Grant F-126). The calculations were carried out using the CDC 6400/6600 computer at the University of Texas Computation Center. One of us (H.S.R.) thanks the Science Research Council (UK) for the award of a Postdoctoral Fellowship.

References

- (1) Part 38: M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977)
- (2) Part 39: M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977)
- (3) Part 41: M. J. S. Dewar and M. McKee, J. Am. Chem. Soc., 99, 5231 (1977)
- (4) (a) R. C. Bingham, M. J. S. Dewar, and D. Lo, J. Am. Chem. Soc., 97, 1285 (a) R. C. Bilghain, M. J. S. Dewar, and D. Eo, J. Am. Chem. Soc., 97, 1283 (1975); (b) *ibid.*, 97, 1294, 1302 (1975); (c) *ibid.*, 97, 1307 (1975).
 E. Clementi and D. L. Raimondi, J. *Chem. Phys.*, 38, 2686 (1963).
 L. Oleari, L. Di Sipio, and G. De Michelis, *Mol. Phys.*, 10, 97 (1966).
 M. J. S. Dewar, J. A. Hashmall, and C. G. Venier, J. Am. Chem. Soc., 90, 1000 (1975).

- (7)1953 (1968).
- (8) M. M. Gilbert, G. Gundersen, and K. Hedberg, J. Chem. Phys., 56, 1691 (1972)
- J. M. Howell and J. R. Van Wazer, J. Am. Chem. Soc., 96, 7902 (1974). (10) J. M. Howell and L. J. Kirschenbaum, J. Am. Chem. Soc., 98, 877 (1976);
- see also J. S. Binkley and J. A. Pople, Chem. Phys. Lett., 45, 197 (1977). (11) L. Radom, W. A. Latham, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc.,
- 95, 693 (1973).
- (12) S. A. Sullivan and J. L. Beauchamp, J. Am. Chem. Soc., 98, 1160 (1976).

- (13) For example, the stabilization of water dimer is calculated to be only about 1 kcal/mol. The problem may be associated with the core-core repulsion function used in MNDO, and we are currently investigating this problem.
- See C. R. Brundle, M. B. Robin, and H. Basch, J. Chem. Phys., 53, 2196 (1970), for a more complete discussion.
 (15) (a) P. F. Zittel, G. B. Ellison, S. V. O'Neil, E. Herbst, W. C. Lineberger, and
- (15) (a) P. F. Zittel, G. B. Ellison, S. V. O'Neil, E. Herbst, W. C. Lineberger, and W. P. Reinhardt, J. Am. Chem. Soc., 98, 3731 (1976), have reported a photoelectron measurement of 19.5 kcal/mol for the ¹A₁/³B₁ separation of methylene and also a value for the electron affinity. For a recent summary of the ab initio calculations on this molecule, see A. H. Pakiari and N. C. Handy, Theor. Chim. Acta, 40, 17 (1975), and for recent experimental studies on methylene, see J. W. Simons and R. Curry, Chem. Phys. Lett., 38, 171 (1976), have recently reassessed their calculations in view of the result reported by Lineberger. By calculating the ³B₁/¹B₁ separation and combining this with an experimental determination of the ¹A₁/¹B₁ separation, they obtain a ³B₁/¹A₁ separation of 19.7 kcal/mol. This compares with the value of 14.1 kcal/mol previously reported by these authors.
- (16) V. Staemmler, Theor. Chim. Acta, 35, 309 (1974).
- (17) R. Ditchfield, J. Del Bene, and J. A. Pople, *J. Am. Chem. Soc.*, **94**, 4806 (1972).
- (18) W. Thiel, unpublished result.
- (19) An extensive review and discussion of the recent literature is given by A. Yokozeki and S. H. Bauer, *Top. Curr. Chem.*, **53**, 71 (1975).
- (20) L. S. Cederbaum, Chem. Phys. Lett., 25, 562 (1974).
- (21) A. B. Cornford, D. C. Frost, C. A. McDowell, J. L. Ragle, and I. A. Stenhouse, J. Chem. Phys., 54, 2651 (1971).
- (22) D. P. Chong, F. G. Herring, and D. McWilliams, J. Electron Spectrosc. Relat. Phenom., 7, 445 (1975).
- (23) W. J. Hehre and J. A. Pople, J. Am. Chem. Soc., 92, 2191 (1970).
 (24) See M. J. S. Dewar, Chem. Br., 11, 97 (1975); Discuss. Faraday Soc., 62,
- (24) See M. J. S. Dewar, Chem. Br., Ti, 97 (1975), Discuss. Faraday Soc., 64, 1977).
 (25) By the method of J. McIver and A. Komornicki, J. Am. Chem. Soc., 94, 2625
- (25) By the method of J. McIver and A. Komornicki, J. Am. Chem. Soc., 94, 2023
 (1972); J. McIver and A. Komornicki, Chem. Phys. Lett., 10, 303 (1971).
 (20) S. McIver and A. Komornicki, Chem. Phys. Lett., 10, 303 (1971).
- (26) See M. J. S. Dewar, "The Molecular Orbital Theory of Organic Chemistry", McGraw-Hill, New York, N.Y., 1969.
- (27) M. J. S. Dewar and G. Ford, J. Am. Chem. Soc., 99, 1685 (1977).

Molecular Orbital Studies of the Radicals of Hydroxybenzenes and Epinephrine

Yasuko Shinagawa* and Yoshiya Shinagawa

Contribution from the Department of Physiology, Kyoto University, Medical School, Kyoto 606, Japan. Received February 25, 1977

Abstract: When calculations of proton hyperfine coupling constants of free radicals from hydroxybenzenes (phenol, 1,2- and 1,4-dihydroxybenzene, 1,2,3- and 1,2,4-trihydroxybenzene) and epinephrine were done using the INDO (intermediate neglect of differential overlap) method, experimental data for 1,2-dihydroxybenzene, 1,4-dihydroxybenzene, and 1,2,4-trihydroxybenzene were exactly reproduced. Calculations for the remaining hydroxybenzenes served to explain the experimental data qualitatively. The hyperfine coupling constants of the radical from epinephrine could be assigned from the present calculations. Although past calculations were done to determine structures of a quinol type, we found in the INDO calculations that semiquinone radicals have a quinoidlike structure. In these radicals, the C-O bond lengths are fairly short, the adjacent C-C bond lengths relatively long, and the next C-C bond lengths in the rings relatively short. The proton hyperfine coupling constants of the radical formed by the oxidation of epinephrine in alkaline ethanol media were measured by electron spin resonance absorption spectroscopy and the magnitudes were 1.28, 2.61, and 0.59 G. The splitting constants calculated by means of the INDO method were consistent with the observed values.

Introduction

Most radicals from hydroxybenzenes can be easily produced in alkaline ethanol solution and there are numerous reports^{1–11} concerning experimental proton hyperfine coupling constants. Geometries which reproduce the experimental data exactly have apparently not been documented. As stated by Pople,¹² the calculated results in the INDO method for the semiquinones were not supported. The ab initio calculations do not reproduce the observed data. In all these calculations or others,^{13–17} the geometries of the semiquinone radicals were considered to be hexagons or a close resemblance and the C–O bond lengths were estimated to be those of a quinol type. The calculated results by Pople also can be reproduced in the geometries of a quinol type.

In the present INDO calculations, we found that these semiquinone anion radicals have a quinoidlike structure, with the rings which are fairly distorted from regular hexagons and the short C-O bond lengths. Lack of success with past calculations may be due to lack of adequate consideration that the molecular geometries of these radicals are distorted as compared to a regular hexagon; i.e., they are of quinoidlike structures. The INDO method has been widely used in studies of radicals and the sigmatropic shifts.¹⁸⁻²⁵ The INDO calculations in studies of proton hyperfine splitting constants of semiquinones have not been successful; however, this method may still be used providing that the geometries of quinone type are reinvestigated.

Pyrocatechol, epinephrine, and related compounds are substrates for the COMT (cathechol-O-methyltransferase) and the relationship between their biological activities and chemical structures has not been well determined.

The authors have reported that the diuretic actions of triazine derivatives²⁶ principally depend upon the force of the charge transfer at their active centers, and that the carbonic anhydrase inhibitory actions of sulfonamide derivatives²⁷ parallel the formal charge of the sulfonamide groups.

Information on molecular geometries of the radicals from hydroxybenzenes and epinephrine is required to determine the structure selectivity by the COMT or the meta/para ratios of the O-methylated products. In the present work, calculations of the proton hyperfine coupling constants of semiquinone anion radicals and epinephrine anion radical were made using the INDO method as well as the HMO and the McLachlan methods. We measured the ESR spectra of epinephrine radical, calculated its proton hyperfine coupling constants, and made assignments. Molecular geometry which well explains the observed proton hyperfine splitting constants of epinephrine radical was obtained.

0002-7863/78/1500–0067\$01.00/0 © 1978 American Chemical Society